Прогнозирование спроса. Цели и методики.
Продолжая тематику «Управления запасами», которую начали в прошлом номере, хотелось бы напомнить, что смысл существования любой коммерческой струткуры в получении прибыли. Вопрос лишь в том, благодаря чему компания обеспечивает себе прибыль? Одна из самых распространенных точек зрения, заключается в том, что успех, в частности аптеки, зависит от того уровня цен, уровня обслуживания, месторасположении аптеки и так далее, и так далее. Все это так и есть, но отталкиваться стоит от другого. Прибыль аптеки обеспечивают ее КЛИЕНТЫ. Именно они делают покупки в аптеке. Или не делают! А вот задача сотрудников удержать и приумножить клиентов аптеки. Это можно сделать, поддерживая уровень обслуживания на очень высоком уровне. Уровень сервиса зависит от того, насколько вежливы продавцы, от того, каков уровень цен в данной аптеке, сколько кассовых аппаратов стоит в зале, от возможности обеспечения лекарственными средствами под закак, и от того ассортимента, который мы предлагаем нашим клиентам. Есть ли у нас в наличии те препараты, которые необходимы нашим покупателям? Как часто у нас в аптеке возникает дефицит по тем или иным позициям?
А поскольку формацевтические оптовики достаточно оперативно пополняют запасы аптеки, то здесь важно вовремя определить потребность в товаре и не упустить момента заказа оптовику, чтобы не допустить дефицита. При столь большом ассортименте, который поддерживают аптеки, удерживать в памяти все позиции просто невозможно, именно поэтому необходимо, используя современные програмные продукты, обеспечить учет потребности в лекарственных средствах на более высоком уровне.
Как обычно происходит процесс определения потребности в конкретной позиции в аптеке? Покупатели спрашивают, значит надо заказать. Закончился препарат, наступило время подачи заявки поставщику. Но этот подход работает, когда непосредственно продавцы заинетересованы в увеличении продаж. К сожалению, столь развитая система мотивации персонала аптеки встречается крайне редко.
Представим себе самою обычную ситуацию. Приходит потенциальный клиент в аптеку, отстаивает очередь, задает вопрос о наличии того лекарственного средства, которое ему прописал доктор, а этого лекарства нет в наличии. Человек уходит из аптеки без покупки, да еще и расстроенный потерянным временем. Соответственно потребность не удовлетворена. А зафиксировал ли эту потребность сотрудник аптеки (провизор)? Вряд ли, так как у него очередь, а, следовательно, отвлекаться на дополнительные операции ему некогда. Итог: клиент ушел без покупки – у аптеки упущенная прибыль. И придет ли этот клиент в аптеку или нет сказать сложно.
Другой пример. Предположим ассортимент у аптеки 5000 позиций. Пришла пора делать заказ поставщикам. Может ли провизор достаточно точно определить объем необходимой партии для каждой позиции? Наверняка нет. Идем по списку товаров, предположим в алфавитном порядке. Уже через 20 минут такой работы, бдительность и внимательность провизора притупляется, не хватает времени, или исчерпан финансовый лимит заказа. В результате те позиции, которые у нас в конце алфавитного списка остаются без внимания. Что получается в результате? Образуется дефицит, а, следовательно, упущенные продажи и прибыль.
И, наконец, третий пример. На этапе выбора поставщика и установления с ним отношений, проводится некий переговорный вопрос, где, в том числе, поставщика должен волновать вопрос об объемах поставок для Вашей аптеки. От объема поставок будет зависеть тот уровень цен, который Вам предоставит поставщик. Кроме того, сам поставщик будет у себя планировать объемы поставок от производителей лекарственных средств и медикаментов. Какие данные аптека может поставщику предоставить об объемах поставок, если нет системы прогнозирования? Только данные об объемах продаж в предыдущий период. Но насколько они соответствую действительному спросу, не знает никто.
Именно поэтому целесообразно использовать системы прогнозирования спроса, которые, учитывая спрос в прошедших периодах, формируюет данные о возможном спросе в следующих периодах.
Итак, что такое прогнозирование? Прогноз – это предположение относительно будущего. Конечно, мы не можем обеспечить абсолютно точный прогноз. Кроме того, чем меньше горизонт прогнозирования, тем более точный прогноз возможно получить. Но отсутствие в компании систем прогнозирования не облегчает и не улучшает ситуации, а наоборот, делает систему неконтролируемой и непрозрачной.
В статье рассматриваются довольно простые и доступные методы прогнозирования. Это связанно с тем, что существенное усложнение методик не ведет к существенному повышению качества прогноза.
Ниже приведена базовая расчетная формула прогноза, от которой стоит отталкиваться, добавляя тонкости и индивидуальности продуктов, с которыми аптеки работают.
Где
Рt – прогноз величины спроса на период t;
Бt – величина базового спроса в период t;
Сt – коэффициент сезонных колебаний в период t;
Т – коэффициент временной тенденции: прирост или сокращение спроса за период t;
Мt – коэффициент поправок на стимулирование продаж в период t (маркетинговая составляющая;
Давайте рассмотрим все составляющие по порядку.
Величина базового спроса – средняя величина спроса за прошедший период.
Коэффициент сезонных колебаний необходимо рассчитывать для продуктов, у которых есть сезонный характер. Для этого необходимо проанализировать потребление за 3 года. Можно собрать данные и за большее количество лет, но здесь есть вероятность влияния на товар факторов, которые уже устарели. Анализ сезонности меньше чем за 3 года может быть не точен в связи со случайностью событий.
Итак, как определить Коэффициент сезонных колебаний?
Расчет представлен в таблице 1 и формулах.
Таблица 1 – Определение индекса сезонности
3. коэффициент поправок на стимулирование продаж. Этот коэффициент устанавливает отдел маркетинга, исходя из собственного опыта, поскольку расчету не подлежит.
Кроме базовой модели прогнозирования спроса существует большое количество статистический методов. Перечислим некоторые из них:
Нахождение средней арифметической. Эта методика приемлема для товаров высокой стабильности, без сезонной составляющей, при отсутствии временной тенденции. Применять нецелесообразно, так как таких товаров практически не существует.
Определение прогнозного значения методом скользящей средней. Применяется также для стабильных товаров.
Линейный прогноз. Работает с помощью нахождения зависимости объема продаж будущего периода от базового, с помощью линейной функции. На рисунке 1 графически представлен прогноз на тринадцатый период с помощью скользящей средней и линейной функции.
Рисунок 1 – Пример прогноза для стабильного товара
Синяя линия на графике отображает фактический объем спроса, лиловый – прогноз, используя скользящую среднюю, а черная – линейный прогноз. Вопрос в том, какой из этих прогнозов более точный. График скользящей средней на графике за прошедший период постоянно находится рядом с фактическим значением. А график линейного прогноза демонстрирует тенденцию к росту. Он и будет в данном случае более точным.
Экспоненциальное сглаживание. Применяется для нестабильных товаров, в связи с этим точность прогноза будет невысока. Примеры на рисунках 2, 3, 4.
Рисунок 2 – Пример прогноза для нестабильного товара (степенная функция).
Рисунок 3 – Пример прогноза для нестабильного товара (полином)
Рисунок 4 – Пример прогноза для нестабильного товара
Исходя из рисунков 2, 3 и 4, можно увидеть, насколько разный результат мы получаем на одних и тех же исходных данных применяя разные функции. Поэтому для нестабильных товаров для повышения точности прогнозирования особенно важно тщательно выбирать методы прогнозов.
При этом надо заметить, что те компании, которые уже внедрили и активно применяют статистические методы прогнозирования, сталкиваются с целым рядом проблем.
Во-первых, применяемые системы довольно часто являются неадекватными. То есть не соответствуют поведению товара. При автоматизации этого процесса, менеджер по закупками опирается на те данные, которые выдает информационная система, не задумываясь, на сколько эти данные точны. Да и сам менеджер зачастую не в курсе, каким именно образом формируются данные прогноза.
Во-вторых, и самое важное, на взгляд автора, на основе каких данных мы формируем прогноз. Самая распространенная ошибка это строить прогнозы на основе предыдущих продаж.
Пример.
Предположим у нас есть информация о движении товаре «Спазмалгон» за 2 месяца (Таблица 2).
Из таблицы 2 видно, что за два месяца было большое количество дней, когда «Спазмалгон» отсутствовал на полке аптеки. Если прогноз на сентябрь строить на основе продаж за июль и сентябрь месяцы, используя среднюю арифметическую, мы получим следующие данные (средняя арифметическая здесь применяется для примера, метод прогнозирования необходимо подбирать индивидуально для каждой группы товара; кроме того, для применения этого метода необходимы данные как минимум за три месяца):
При таком подходе мы не учитываем те дни, когда товара не было на складе. Фактически это дефицит, то есть спрос был, но аптека его удовлетворить не смогла. А, следовательно, возникли упущенные прибыли.
Если использовать ту же методику, но опираться на спрос, мы сможем получить более точные данные о спросе. Как это сделать? Здесь есть два варианта:
Каждый раз, когда клиент обращается к продавцу с вопросом о товаре, которого нет в наличии, вносить об этом информацию в специальный документ, не забывая регистрировать тот объем, который необходим клиенту. Но в рознице такой подход не приемлем, так как при этом сильно увеличивается время обслуживания клиента, а, следовательно, падает уровень сервиса.
Другой вариант – определять спрос, учитывая только дни, когда товар был на складе. Данные о реальных продажах в нашем примере представлены в таблице 3.
Таблица 3 – Определение реального спроса
Именно этот прогноз будет более точно отражать спрос, а соответственно аптека сможет его удовлетворить, повысив показатели прибыли, а самое главное улучшить клиентский сервис.
Для того, чтобы повысить качество прогноза необходимо периодически проверять его точность, то есть проводить анализ выполняемого прогноза. Если прогнозы не верны, у компании будут одни и те же повторяющиеся ошибки со всеми вытекающими последствиями. Один из самых простых методов анализа прогноза является следующий:
Необходимо при этом стремиться к уменьшению ошибки прогнозирования. Кроме того, следует на нее опираться при выборе системы прогнозирования. Рассматривая различные варианты прогнозов (в том числе эмпирических, то есть построенных на личном опыте), выбирать ту методику, которая обеспечит минимальную ошибку прогнозирования.
Но все-таки у статистических методов прогнозирования есть несколько ограничений:
- При открытии новой аптеки нельзя абсолютно точно определить объем продаж в ней;
- Для точного прогнозирования необходимы данные за 3 периода (года, месяца, недели)
- При вводе нового товара никто не знает, каков на него реальный спрос.
Но, что касается текущей оперативной работы с запасами, это один из самых важных инструментов, который в дальнейшем упрощает и качественно улучшает нашу работу.
Конечно, сам процесс внедрения и адаптации системы прогнозирования весьма сложный и длительный. Но, в результате, на выходе мы получаем:
Автоматизация и ускорение процесса принятия решения об объемах поставок;
Сокращение дефицита вследствие более пристального внимания к каждой позиции ассортиментного портфеля аптеки;
- Уменьшение товарного запаса;
- Увеличение объема продаж;
- Планирование работы с поставщиками;
- Получение лучших предложений от поставщика в связи со стабильностью отношений;
- Более качественное использование денежного ресурса аптеки;
- Повышение оборачиваемости запасов.
Ольга Грязнова
Бизнес-консультант в области управления запасами, закупок и SCM
Любая информация, размещенная на этом сайте, охраняется авторским правом. Копирование контента или его частей возможно только с письменного разрешения администрации сайта.
Популярные страницы